Problem 24.33

A cylinder of radius R has a constant charge

distribution p shot through it. Derive an For the 3-d view:
expression for the electric field function E
(r) when r <R.

cengral”

" Gaussian cylinder of
arbitrary radius r and
length h
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THE EASY WAY: Because the charge density is constant, the amount of charge
inside the Gaussian surface of arbitrary length “h” will be:

Qener = PVena = p[TCr2 (h)]

Noting that all of the flux will pass through the cylindrical part of the Gaussian
surface with none through the end-caps, Gauss’s Law yields:

-[AE o dA = Jenclose
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2
= E(2mh)=PmD
= E=Lr
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This would clearly be the way to do this problem if it was found on an AP test
and time was a problem. If, on the other hand (and additionally), you had time
and the volume charge density wasn’t constant, how would you do the problem
then?
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THE HARD PROBLEM: What happens if the charge isn’t uniformly distributed? In
that case, determining the “charge enclosed” inside the Gaussian surface gets
tricky. If you have intellectual curiosity as to how to do a problem like this, read
on. Otherwise, stop here.

In this problem, the left side of Gauss’s
law is the same as always for cylindrical
symmetry, so we really don’t need to
mess with that.

end view

The right side of Gauss’s law is where
being clever pays off.

Let’s assume the charge per unit
volume varies as p =kc, wherekis a
constant and c is some distance from
the central axis. What then?
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To deal with this, consider a differentially thin cylindrical shell of radius
“c” (where c < r), of differential thickness “dc,” of differential volume “dV” and of
arbitrary length h (i.e., the length of the Gaussian cylinder).

If we knew dV for the shell, we could multiply it by p to get the charge enclosed

within the shell.
differentially thin ===

cylindrical shell

dV equals the circumference of
the circle (2rc) times its
thickness (dc) times its length (h).
That is:

dV = (2mhc)dc

That means the differential
charge dq inside the shell is:
dg= p dv

= (ke)[ (2nhc)dc |
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Using this information in Gauss’s Law yields:

.[AE 0 dA = denclose

The sketch below gives an end-view of the situation, complete with shell.
Clearly, the total charge inside the Gaussian surface will be the sum of all of
the dqg’s from zero to the Gaussian radius r. That is:

qencl = J.dq

= jc=0(2nphc)dc end view

= L=O(2ﬂ:(kc)hc)dc Gaussian
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This works for r < R. How about
forr>R? ————
- =~

When the Gaussian radius (i.e.,
the radius at which you are
evaluating the electric field
function) and the radius in which Gaussian \
the charge is enclosed (r in the I surface \

previous case) is the same, your k- \|
Gauss’s Law expression will have r | 1
terms that will cancel. 1 differentially thin ]
‘\ cylindrical shell 1
When the Gaussian radius ris \ !

outside the structure, the “charge
enclosed” doesn’t go all the way
out to the Gaussian surface, so
the integral’s limits change from r \ N S o _ -
to R (the edge is where the

L ™ blue is charge INSIDE Gaussian surface
charge stops. That calculation is
shown on the next page.
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For this case, Gauss’s Law yields:

J‘AE odA = qe:lose
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Kindly note that as you would expect E to go to zero as r goes to infinity, that is
exactly what the expression suggests. It all works nicely.
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